PT & R Conference Pedestrian Safety: What is the Role of Public Transportation?

Seatac, WA

August 23, 2005

University of Washington

Dr. Anne Vernez Moudon

Urban Form Lab

Seattle, WA

Reported Pedestrian Collisions on State Routes 1995-2000

	Washington State		King County		SR99 in King Co.	
	1995-2000	Avg. Yearly	1995-2000	Avg. Yearly	Total 1995-200	Avg. Yearly
Collisions	1795	299	670	112	289	48
Pedestrians	1895	316	714	119	303	51
Fatal Injuries	175	29	56	9	23	4
Disabling Injuries	376	63	_144	24	_65	11
Societal Cost	\$ 610,208,000	\$ 101,701,333	\$222,015,000	\$37,002,500	\$97,414,000	\$16,235,667

WHERE? Puget Sound Region PALs by Deaths

WHERE?
Puget Sound
Region PALs
By Costs

PEDESTRIAN SAFETY AND TRANSIT CORRIDORS

- BUS STOP USAGE (# of people boarding and alighting from bus within 250 feet of the center of a PAL or sample point)= Statistically significant variable
- Increasing bus stop usage by 10 people increases the odds that a bus stop will be a PAL by
 - 1.17 times Model 1 (All PALs)
 - 1.16 times Model 2 (SR99 PALs)
 - 1.5 times Model 3 (Non-SR99 PALs)

Research supported by The U.S. and the Washington State Departments of Transportation

PEDESTRIAN SAFETY AND TRANSIT CORRIDORS

- The level of bus usage along state highways is associated with high rates of pedestrian-vehicle collision
- Facilities with high numbers of bus boarding or alighting need to be designed not only for cars, but for pedestrians, allowing people to safely walk along and across the roadway.

PEDESTRIAN SAFETY AND TRANSIT CORRIDORS

- DOT and transit staff must work together to identify facilities and locations where bus riders are at risk and take appropriate steps to insure pedestrian safety.
- Programs to develop multi-modal facilities as well as to integrate major regional facilities within local suburban communities need to pay specific attention to the role of transit in shaping the demand for non-motorized travel on the facilities.

WHERE?

Transportation-Efficient Land Use Mapping Index TELUMI

Washington State Dept of Transportation Transportation Research Center (TRAC)

University of Washington Urban Form Lab Seattle, WA

TELUMI Levels of Transportation Efficiency

Transportation Sys	tems	TELUMI Cartographic Model		
Transportation Options	Zone/Threshold Name	Zone Characteristics		
Low number and types of options	Low TE	Zones with high number of SOV and low number of transit trips		
Medium number and types of options	Latent TE	Zones with medium number of transit or para-transit trips		
High number of types and options	High TE	Zones with high number of transit, para-transit, and non-motorized trips, and low SOV number of trips		

Composite Layer Binary Logit Model

- Dependent variable: Dichotomized BUS ridership data <37 versus >37 riders per bus stop per day
 - Threshold of 37 riders per stop (37x4=148 per intersection) divided the sample population of bus users into those in the top 30 percent of higher bus usage, and all the others.
 - Data distribution: 63 percent (3,356 out of 5,363) of the bus stops and 91 percent of boardings and alightings (430,684 out of 473,169) within the Seattle city limits.
- Independent variables: 9 TELUMI measures averaged in a quarter-mile radius buffer, centered on bus stop locations

TELUMI

Composite Layer

Logit Model Results: Significant variables

Nagelkerke R-square: 0.344

	Variable Name	B*	S.E.	Sign.**	Exp(B)	
Variable 1	res_den	0.662	0.053	0	1.939	
Variable 2	p_parking	0.506	0.076	0	1.659	
Variable 3	nc2	0.471	0.08	0	1.602	
Variable 4	emp_den	0.416	0.056	0	1.517	
Variable 5	slope	0.324	0.07	0	1.383	
Variable 6	blk_size	0.311	0.046	0	1.365	
Variable 7	sch_traff	0.002	0	0	1.002	
Variable 8	ret_traff	0	0	0	1	
	Constant	-5.181	0.179	0	0.006	

^{*}B values are the weights applied to each variable to calculate the composite layer

^{**}Significant at 0.99 level

TELUMI Composite Layer Analysis

Distribution of Residential Units and Employment in Three TE Zones

